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STUDYING THE DARCY–STEFAN PROBLEM

ON PHASE TRANSITION IN A SATURATED POROUS SOIL

UDC 517.958+536.421S. A. Sazhenkov

The Cauchy problem for the Darcy–Stefan model, which describes the process of freezing (thawing) of
a saturated porous soil with allowance for liquid-phase filtration, is considered. The model includes
the Darcy law, the equation of liquid-phase incompressibility, the equation of absence of solid-phase
motion, the equation of energy balance in the porous soil–saturating continuous medium system, and
also the Stefan condition and the condition of continuity of the normal components of the velocity
field at the interface boundary. The existence of generalized solutions of the problem satisfying an
additional condition of entropy nondecreasing in a thermomechanical system (i.e., the second law of
thermodynamics) is proved by the method of the kinetic equation.

Key words: filtration in a porous soil, Darcy law, Stefan problem, freezing, thawing, entropy,
kinetic equation.

Introduction. Mathematical modeling of soil freezing (thawing) phenomena with allowance for convection
of the saturating liquid phase is necessary for scientific support of various engineering processes in industry and
agriculture [1]. The majority of the models used combine the Stefan problem to describe phase transformations in a
continuous medium and the Darcy law to describe the dynamics of filtration of viscous continuous media through an
incompressible porous soil. A rather generic multidimensional Darcy–Stefan model was proposed in [2] to describe
the processes of freezing (thawing) of a viscous liquid in a motionless porous soil with identical values of density
in the liquid and frozen phases and with allowance for the buoyancy force depending nonlinearly on temperature.
An initial-boundary problem was considered for this model in [2], and the existence of a weak generalized solution
was proved. (The proof was performed by the classical methods of the theory of elliptic and parabolic second-order
equations.) The sought functions were the filtration rate, the pressure gradient, and the temperature, whereas
the specific internal energy was expressed in terms of temperature, which is consistent with the Stefan problem
formulation in [3, Chapter 5, § 9].

The Cauchy problem with periodic initial and boundary conditions for the above-mentioned Darcy–Stefan
model is formulated and studied in the present paper; its physical essence is commented, and the boundaries
of applicability of the model are determined. The Darcy–Stefan problem is studied in terms of an unknown
specific internal energy rather than temperature, which makes the mathematical formulation much more difficult,
because the energy balance equation with such a choice of the sought function is a degenerate parabolic-hyperbolic
equation, the degeneration proceeding on a segment of values of the specific internal energy. A definition of the
entropy solution of the Darcy–Stefan problem is introduced. This solution is more restrictive than the standard
definition of the weak generalized solution. All possible entropy solutions are found to satisfy the second law of
thermodynamics postulating non-negative production of entropy. From the physical viewpoint, this is an advantage
of the entropy solution over the standard weak generalized solution. A theorem of the existence of the entropy
solution is formulated; the proof of this theorem is based on the results of the Antontsev–Monakhov theory [4,
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Chapter 5] and on the method of the kinetic equation, which allows the initial entropy formulation to be interpreted
in terms of the linear equation of the type of the Boltzmann equation in the kinetic theory of gases.

1. Formulation of the Darcy–Stefan Problem. Let us consider a thermomechanical system consisting
of a motionless heat-conducting porous soil and a continuous medium completely filling the pores. The saturating
continuous medium can be in a liquid or solid state and perform phase transitions between these states. The porous
skeleton, i.e., soil, experiences no phase transitions.

A standard macroscopic approach (see, e.g., Eqs. (10.7.13)–(10.7.22) in [5]) is used to describe the system.
The essence of this approach is as follows. At the level of a pore, the mathematical model, which unites the
systems of the classical equations for the dynamics of the skeleton and saturating porous component and a system
of relations on the pore surfaces, is replaced by an averaged system of equations, which describes the dynamics
of a “homogenized” continuous medium whose thermomechanical properties differ from those of the solid skeleton
and of the medium filling the pores. The regions occupied by the solid skeleton and the porous component are not
distinguished, and the homogeneous model coefficients are quantities that bear information on both components of
the thermomechanical system. These quantities are called the effective coefficients.

With allowance for some additional and simplifying assumptions, the most general model can be reduced to
the following formulation of the Darcy–Stefan problem.

At each time instant t ∈ [0, T ] (T is an arbitrarily defined positive constant), the homogenized continuous
medium is assumed to occupy a plane R

2 or a three-dimensional space R
3. Some part of the continuous medium

with a temperature θ < 0 occupies a certain domain Y (t) := {x ∈ R
d: θ(x, t) < 0} (d = 2, 3); the remaining part of

the continuous medium with a temperature θ > 0 occupies the domain W (t) := R
d \ Y (t) = {x ∈ R

d: θ(x, t) > 0}.
The porous medium is in the solid (frozen) state in the domain Y (t) and in the liquid (thawed) state in the domain
W (t). The locations of the domains Y (t) and W (t) and the interface Γ(t) = Y (t) ∩W (t) = {x ∈ R

d: θ(x, t) = 0}
are unknown.

We have to find the distribution of the specific internal energy e = e(x, t), the field of filtration velocities
v = v(x, t), and the distribution of pressures p∗ = p∗(x, t), which satisfy the following equations and conditions:

— the energy balance equation
∂e

∂t
+ divx(ve) = Δxθ, x ∈ R

d \ Γ(t), t ∈ (0, T ); (1a)

— the thermodynamic equation of state of the continuous medium

θ =

⎧⎪⎨
⎪⎩

θs(e), e < 0,

0, 0 ≤ e ≤ l,

θl(e), e > l

(1b)

(the functions θs and θl are set so that θ = θ(e) has a bounded second derivative and is a nonrigorously monotonically
increasing function, with 0 < θ′s(e), θ

′
l(e) < +∞ ∀ e ∈ R \ [0, l]);

— the condition of the absence of motion of the frozen phase

v = 0, x ∈ Y (t), t ∈ (0, T ); (1c)

— the condition of continuity (condition of incompressibility) and the Darcy filtration law for θ ≥ 0

divx v = 0, x ∈ W (t), t ∈ (0, T ); (1d)

v = −∇xp∗ + g(θ), x ∈ W (t), t ∈ (0, T ); (1e)

— the equations of mass and heat balance on the interface Γ(t) [6, § II.3]

v · n = 0, [∇xθ]ls · n = lV · n, x ∈ Γ(t), t ∈ (0, T ) (1f)

(the second condition is also called the Stefan condition);
— the bounded periodic initial data for the distribution of the specific internal energy

e(x, 0) = e0(x) (|e0(x)| ≤ c0 = const), e0(x + ki) = e0(x), x ∈ R
d; (1g)

— the conditions of spatial periodicity

e(x + ki, t) = e(x, t), v(x + ki, t) = v(x, t), (x, t) ∈ R
d × [0, T ]. (1h)
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In Eqs. (1a)–(1h), ki (1 ≤ i ≤ d) are the orthogonal unit vectors of the standard Cartesian basis in R
d, θ is

the temperature of the continuous medium, which is constant for specific internal energy values within the integer
nondegenerate interval [0, l], which means the phase transition in the porous component, θ = 0 is the thawing
(freezing) temperature, e = l is the latent specific heat of melting, g ∈ C2(R) is the buoyancy, which may be a
nonlinear function of temperature in the general case [7], n is the unit vector normal to Γ(t), which is directed
toward Y (t), V is the velocity of motion of Γ(t), [∇xθ]ls = (∇xθ)l − (∇xθ)s is the jump of the temperature gradient
∇xθ on the boundary Γ(t), and (∇xθ)l and (∇xθ)s are the limiting values of ∇xθ on Γ(t) in the domains W (t) and
Y (t), respectively.

It should be noted that the Darcy–Stefan model (1a)–(1f) is a one-temperature model, i.e., the solid skeleton
and the porous component have an identical temperature θ at all points of the spatial continuum, and spatial heat
transfer is described by one energy balance equation (1a). A more general model of liquid filtration through
porous soils (see, e.g., Eqs. (10.7.13)–(10.7.22) in [5]) is a two-temperature model and contains two energy balance
equations: for the soil skeleton and for the saturating liquid. In some cases, first of all, at low Reynolds numbers
(i.e., for rather slow filtration flows), the difference between the temperatures of the soil skeleton and the porous
medium can be neglected [5, pp. 646–647], because the time needed for rough equalization of the temperatures in
the skeleton and porous medium in small spatial volumes is insignificant, as compared with the duration of heat
income due to filtration flows. In particular, an example of such a case is the process of natural freezing (thawing)
of soils. Hence, the energy balance equations for two temperatures are reduced to one energy balance equation for
one temperature, i.e., to Eq. (1a). Note that the coefficients in Eq. (1a) are averaged (effective), i.e., they depend
on specific heats, thermal conductivities, densities, and specific volumes of both the porous component and the solid
skeleton. (To simplify the calculations, we assume that the coefficients in convective terms are equal to unity.)

2. Concept of the Entropy Solution. Theorem of Existence of Entropy Solutions. To formulate
the concept of the entropy solution of the Darcy–Stefan problem, we apply the following notation for the linear spaces
of periodic functions: Q = Ω×(0, T ); spatial period Ω := [0, 1)d; Banach spaces Lp ⊂ Lp

loc(R
d) and Hs,p ⊂ Hs,p

loc (Rd)
consisting of 1-periodic functions and supplemented with the norms ‖u‖Lp = ‖u‖Lp(Ω) and ‖u‖Hs,p = ‖u‖Hs,p(Ω);
for integer m ≥ 0, closed subspace Cm of 1-periodic functions with respect to x from Cm(Rd).

Let us introduce the concept of the entropy solution of the Darcy–Stefan problem.
Definition 1. The entropy solution of the Darcy–Stefan problem is understood as a pair of functions (e, p∗)

if these functions satisfy the following conditions and relations:
1) condition of regularity

e ∈ L∞(Q), θ(e), H(e) ∈ L2(0, T ;H1,2), p∗ ∈ L2(0, T ;H2,2), (2a)

where H(e) def=

e∫ √
θ′(λ) dλ;

2) integral inequality∫
Q

{
ϕ(e) ∂tζ + ϕ+(e)[−∇xp∗ + g(θ(e))] · ∇xζ + w(e)Δxζ − ϕ′′(e)|∇xH(e)|2ζ

}
dx dt

+
∫
Ω

ϕ(e0)ζ(x, 0) dx ≥ 0, (2b)

where ϕ, ϕ+, and w are arbitrary functions, such that

ϕ ∈ C2
loc(R), ϕ′′(e) ≥ 0, ϕ+(e) =

e∫
Iλ≥0ϕ

′(λ) dλ, w(e) =

e∫
ϕ′(λ)θ′(λ) dλ, (2c)

ζ ∈ C2
loc(R

d × [0, T ]) is an arbitrary non-negative function 1-periodic with respect of x, which vanishes in the
neighborhood {t = T };

3) equation

Δxp∗ = divx {g(θ(e))} almost everywhere in Q. (2d)
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Note, if the entropy solution is constructed, then the velocity vector can be found by the formula

v(x, t) = Ie(x,t)≥0

[
−∇xp∗(x, t) + g(θ(e(x, t)))

]
. (3)

Though the distribution of pressure p∗ in determining the entropy solution is found within the entire period Ω, it
is physically reasonable to consider only the values for x ∈ Ω \ Y (t). With allowance for the equation of state (1b),
formula (3) is in good agreement with (1c) and (1e).

In Eqs. (2c) and (3), and further on, Iλ≥s denotes the Heaviside function of the variable λ with a jump at
the point λ = s:

Iλ≥s
def=

{
1, λ ≥ s,

0, λ < s.

With allowance for Eqs. (1d) and (3), and the initial condition (1g), the integral inequality (2b) in the sense
of the theory of distributions is equivalent to the inequality

∂ϕ(e)
∂t

+ v · ∇xϕ(e) − Δxw(e) ≤ −ϕ′′(e)|∇xH(e)|2 in D′(Q). (4)

Under the assumption that ϕ(e) = ±e, the energy balance equation (1a) is valid in the entire space Q in the sense
of distributions. As was stated in [6, § II.3], Eq. (1a) defined in the entire space Q is formally satisfied in each of
the regions {(x, t) ∈ Q: x ∈ Y (t), t ≥ 0}, and {(x, t) ∈ Q: x ∈ W (t), t ≥ 0}, and the Stefan condition [i.e., the
second equation in (1f)] is satisfied on the interface surface Γ(t). For this reason, and also by virtue of the regularity
conditions (2a), all possible entropy solutions of the Darcy–Stefan problem determined by conditions (2a)–(2d) are
weak solutions of the Darcy–Stefan problem, i.e., they satisfy the equations of system (1a)–(1h), but Eq. (1a) is
satisfied in the weak sense, and conditions (1f) are satisfied in the sense of the traces. The choice ϕ(e) = ±e,
however, is a particular case; hence, the integral inequality (2b) [and, correspondingly, the differential inequality
(4)] is more restrictive than the energy balance equation. In essence, in the case of smooth and convex functions
ϕ(e) that are not equal to e and −e, inequality (4) is a complement to the formulation of the Darcy–Stefan problem.

Let us comment on the physical motivation of this complement. Integrating inequality (4) with respect to
x and t on Ω× (0, τ) and taking into account the solenoidal character of v, 1-periodicity of v and e with respect to
x, and Green’s formulas for an arbitrary τ > 0, we obtain∫

Ω

ϕ(e(x, τ)) dx +

τ∫
0

∫
Ω

ϕ′′(e)|∇xH(e)|2 dx dt ≤
∫
Ω

ϕ(e0(x)) dx ∀ϕ ∈ C2(R), ϕ′′ ≥ 0. (5)

Requiring the axiom of the state of liquids and gases [8, Part II, § 8] to be satisfied for the problem considered, i.e.,
postulating the fundamental thermodynamic identity θabs dS = de [an incompressible and one-parameter medium
is considered; p∗d(1/ρ) ≡ 0, where ρ is a constant density], we can present the specific entropy S as a function of
the specific internal energy in the form

S(e) =

e∫
dλ

θ(λ) + θdif
. (6)

In Eq. (6) and in the fundamental thermodynamic identity, θabs is the absolute temperature and θdif is the difference
between the zero value of temperature on the scale θ and the absolute zero, i.e., θabs(e) = θ(e) + θdif . Twice
differentiating Eq. (6) with respect to e, by virtue of the equation of state (1b), we find that S′′(e) ≤ 0 for all e ∈ R.
Hence, we can set ϕ(e) = −S(e) in inequalities (2b), (4), and (5). Then it follows from Eq. (5) that∫

Ω

S(e(x, τ)) dx ≥
∫
Ω

S(e0(x)) dx

for all τ > 0. This inequality coincides with the second law of thermodynamics: entropy production is non-negative.
The above-performed considerations also imply that an arbitrary function S(e) = −ϕ(e), where ϕ is a smooth

and convex function, can be used as the entropy in the examined thermomechanical system if we do not require the
axiom of the state of liquids and gases to be satisfied. Then the satisfaction of the second law of thermodynamics
is guaranteed by inequality (4) [inequality (2b) in the definition of the entropy solution], which is further called the
entropy inequality.
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It should be noted that the entropy is understood in the mathematical theory of nonlinear conservation laws
(see, e.g., [9, 10]) as a convex function ϕ rather than the function with the opposite sign S = −ϕ, as it is commonly
used in thermodynamics.

The following theorem is stated.
Theorem 1. For all initial data e0 ∈ L∞, such that −c0 ≤ e0(x) ≤ c0 almost everywhere in R

d, the
Darcy–Stefan problem has at least one entropy solution.

Theorem 1 is proved in Secs. 3–5.
3. Parabolic Approximation of the Darcy–Stefan Problem. Partial Compactness of Approxi-

mate Solutions. Along with the Darcy–Stefan problem, we consider its parabolic approximation

∂e

∂t
+ u · ∇xe

+ = Δxθ(e) + εΔxe, (x, t) ∈ R
d × (0, T ); (7a)

u = −∇xp∗ + g(θ(e)), divx u = 0, (x, t) ∈ R
d × (0, T ); (7b)

e(x + ki, t) = e(x, t), u(x + ki, t) = u(x, t), (x, t) ∈ R
d × (0, T ) (7c)

with the initial data (1g) [in (7a), e+ = Ie≥0 e].
According to the theory of filtration of immiscible liquids [4, Chapter 5], for an arbitrary fixed ε > 0, there

exists a unique smooth solution (eε, p∗ε,uε) of problem (7a)–(7c), (1g); the pressure p∗ε is determined with accuracy

to a constant term, which can be fixed by a standard requirement, e.g.,
∫
Ω

p∗ε(x, t) dx = 0. Based on the maximum

principle and energy estimates, we obtain

−c0 ≤ eε(x, t) ≤ c0 in R
d × (0, T ); (8a)

‖∇xθ(eε)‖2
L2(Q) + ‖∇xH(eε)‖2

L2(Q) + ε‖∇xeε‖2
L2(Q) + ‖∇xp∗ε‖2

L2(Q) ≤ c1(Q), (8b)

where the constant c1 is independent of ε.
Inequalities (8) imply the existence of a sequence of solutions eε, p∗ε, uε of problem (7a)–(7c), (1g) and five

functions e, p∗, u, θ∗, and H∗ such that the following limit relations are valid for ε↘ 0:

eε → e weak star in L∞(Q); (9)

uε → u, ∇xp∗ε → ∇xp∗ weakly in L2(Q); (10)

∇xθ(eε) → ∇xθ∗, ∇xH(eε) → ∇xH∗ weakly in L2(Q). (11)

As the Darcy–Stefan problem is nonlinear, to pass to the limit in approximate equations, we have to prove
strong convergence of some subsequence of approximate solutions. For this purpose, we prove the pre-compactness
of the families {∇xp∗ε}ε>0 and {uε}ε>0.

Statement 1. For an arbitrary bounded set K ⊂ R
d
x with a sufficiently smooth boundary, there exists a

constant c2(K) such that

‖∇xp∗ε‖L2(0,T ;H1,2(K)) + ‖∂t∇xp∗ε‖L2(0,T ;H−1,2(K))

+ ‖uε‖L2(0,T ;H1,2(K)) + ‖∂tuε‖L2(0,T ;H−1,2(K)) ≤ c2(K). (12)

In L2
loc(R

d
x × (0, T )), the families {∇xp∗ε}ε>0 and {uε}ε>0 are relatively compact.

The proof is based on the use of a standard technique for constructing a priori estimates of solutions of
parabolic and elliptic equations [3, 11].

LetK be an arbitrary bounded subset R
d
x with a sufficiently smooth boundary. Equations (7b) yield Eq. (2d),

which, in turn, by virtue of inequalities (8) and uniform boundedness of g′
θ(θ(eε)), implies that

‖Δxp∗ε‖L2(K×(0,T )) ≤ c3(K) (13)

[hereinafter in the proof of this statement, the constants cj(K) (j = 3, 4, . . . , 9) are independent of ε]. Estimates
(8) and (13) and the second fundamental inequality for elliptic operators [11, Chapter II, § 6] yield the estimate
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‖p∗ε‖L2(0,T ;H2,2(K)) ≤ c4(K). (14)

Multiplying (7a) by the function g′iθ(θ(eε))θ′(eε) (1 ≤ i ≤ d) and conducting some simple transformations, we
obtain

∂tgi(θ(eε)) = − divx(uhi(eε)) + Δxri(eε) + εΔxgi(θ(eε)) − θ′(eε)g′′iθθ(θ(eε))|∇xθ(eε)|2

− g′iθ(θ(eε))θ′′(eε)|∇xH(eε)|2 − εg′′iθθ(θ(eε))|∇xθ(eε)|2 − εg′iθ(θ(eε))θ′′(eε)|∇xeε|2, (15)

where h′i(eε) = Ieε≥l g
′
iθ(θ(eε))θ′(eε) and r′i(eε) = g′iθ(θ(eε))(θ′(eε))2. Multiplying both sides of equality (15) by an

arbitrary function ϕ ∈ L2(0, T ;C1
0(K)), integrating the resultant equality with respect to K×(0, T ), and integrating

the right side by parts, we find∫
K×(0,T )

(
∂tgi(θ(eε))

)
ϕdx dt =

∫
K×(0,T )

uhi(eε) · ∇xϕdx dt

−
∫

K×(0,T )

g′iθ(θ(eε))θ′(eε)∇xθ(eε) · ∇xϕdx dt− ε

∫
K×(0,T )

g′iθ(θ(eε))θ′(eε)∇xeε · ∇xϕdx dt

−
∫

K×(0,T )

g′′iθθ(θ(eε))θ′(eε)|∇xθ(eε)|2 dx dt−
∫

K×(0,T )

g′iθ(θ(eε))θ′′(eε)|∇xH(eε)|2 dx dt

− ε

∫
K×(0,T )

g′′iθθ(θ(eε))|∇xθ(eε)|2 dx dt− ε

∫
K×(0,T )

g′iθ(θ(eε))θ′′(eε)|∇xeε|2 dx dt.

Applying the Cauchy inequality in the right side and using estimates (8), we obtain∣∣∣ ∫
K×(0,T )

(
∂tgi(θ(eε))

)
ϕdx dt

∣∣∣ ≤ c5(K)‖ϕ‖L2(0,T ;H1,2(K)),

whence it follows

‖∂tgi(θ(eε))‖L2(0,T ;H−1,2(K)) ≤ c6(K) (1 ≤ i ≤ d). (16)

By virtue of the properties of elliptic operators [11, Chapter II], inequality (16) and the equality ∂tΔxp∗ε =
∂t divx g(θ(eε)) yield the estimate

‖∂t∇xp∗ε‖L2(0,T ;H−1,2(K)) ≤ c7(K). (17)

From Eq. (7b), estimate (14), inclusion ∇xg(θ(eε)) ∈ L2(K×(0, T )), equation ∂tuε = −∂t∇xp∗ε+∂tg(θ(eε)),
and estimates (16) and (17), there follow the inequalities

‖uε‖L2(0,T ;H1,2(K)) ≤ c8(K), ‖∂tuε‖L2(0,T ;H−1,2(K)) ≤ c9(K). (18)

Thus, estimate (12) is a consequence of estimates (14), (17), and (18). It should be noted that the families
{∇xp∗ε}ε>0 and {uε}ε>0 are relatively compact owing to (12) and the results on compactness from [12].

4. Kinetic Formulation Associated with the Darcy–Stefan Problem. 4.1. Preliminary Information.
In the present work, the compactness of subsequences of approximate solutions is justified and the solvability of
the Darcy–Stefan problem is proved on the basis of constructing a kinetic equation associated with the problem,
which is a tool of the method of the kinetic equation. This method was developed to study a wide range of applied
problems, for instance, boundary-value problems for the system of equations of isentropic gas dynamics, quasi-linear
conservation laws of the first and second order, and models of two-phase filtration in fibrous structures [9, 13, 14].
The method of the kinetic equation allows quasi-linear equations to be reduced to linear scalar equations whose
solutions are functions of “distributions” containing additional “kinetic” variables.

As the kinetic formulation associated with the Darcy–Stefan problem is constructed similar to [13, 14] and
includes the notion of measure-valued mappings corresponding to weakly converging sequences of approximate
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solutions, we introduce some definitions and notations for measure-valued mappings: Prob (Rn) is the set of prob-
ability measures in R

n, i.e., non-negative Radon measures with a unit norm; M(Rn) is the space of finite Radon
measures above R

n. The norm in M(Rn) is introduced in a standard manner [10, Sec. 1.2.8]. The mapping μ:
R

d
x × (0, T ) �→ M(Rn) is called bounded, weak star measurable, and 1-periodic with respect to x, if, for an arbitrary

F ∈ L1
loc(R

d
x × (0, T );C0(Rn)), the function (x, t) �→

∫
Rn

p

F (x, t,p) dμx,t(p) is measurable, and the following equality

is valid for 1 ≤ i ≤ d: ∫
Rn

p

F (x, t,p) dμx+ki,t(p) =
∫

Rn
p

F (x − ki, t,p) dμx,t(p).

Here μx,t = μ(x, t) is a standard notation, i.e., the measures μx,t are parameterized with parameters x and t.
Following definition 2.7 in [10, Chapter 3], we denote the linear space consisting of the above-described measure-
valued mappings μ by L∞

w (Rd
x × (0, T ); M(Rn)) and introduce the norm in this space

‖μ‖L∞
w (Rd

x×(0,T );M(Rn)) = ess sup
(x,t)∈Rd

x×(0,T )

‖μx,t‖M(Rn).

4.2. Concept of the Kinetic Formulation. The limit relations (9) and (11), the Tartar theorem (Theorem 2.3
in [10, Chapter 3]) and the Ball theorem (Theorem 2.1 in [10, Chapter 4]) imply the existence of a subsequence
{eε}ε→0 and 1-periodic (with respect to x) measure-valued functions ν ∈ L∞

w (Rd
x × (0, T ); Prob (Rλ)) and σ ∈

L∞
w (Rd

x × (0, T ); Prob (Rλ × R
d
q)), such that

ϕ(eε)−→
ε↘0

∫
Rλ

ϕ(λ) dνx,t(λ) weak star in L∞(Rd
x × (0, T )) (19)

for all functions ϕ ∈ C(Rλ) and

ψ(eε,∇xH(eε))−→
ε↘0

∫
Rλ×Rd

q

ψ(λ, q) dσx,t(λ, q) weak star in L∞(Rd
x × (0, T )) (20)

for all functions ψ ∈ C(Rλ ×R
d
q) satisfying the condition |ψ(λ, q)| ≤ c(1 + |λ|+ |q|)r, 0 ≤ r < 2. The measures νx,t

and σx,t are called the Young measures associated with weakly converging subsequences {eε} and {eε,∇xH(eε)},
respectively.

We introduce the distribution function of the measure νx,t

f(x, t, λ) =
∫
Rs

I λ≥s dνx,t(s) (21)

and the parameterized Heaviside function

fε(x, t, λ) = Iλ≥eε(x,t), (22)

which is a distribution function of the parameterized measure γeε(x,t) — the Dirac measure on Rλ concentrated at
the point λ = eε(x, t). By virtue of Eq. (19) and the obvious presentation

ϕ(eε(x, t)) = −
∫
R

ϕ′(λ)fε(x, t, λ) dλ ∀ϕ ∈ C1
0 (R),

we have the limit relation

fε −→
ε↘0

f weak star in L∞((0, T ) × Rλ;L∞). (23)

By virtue of Statement 1, there exists another subsequence from {eε,uε, p∗ε} such that

uε −→
ε↘0

u, ∇xp∗ε −→
ε↘0

∇xp∗ strongly in L2(Q). (24)

Then, we denote the parameterized Radon measure on Rλ and the Radon measure on Q × Rλ described by the
formulas
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dλχε(x, t, λ) = |∇xH(eε)|2dγeε(x,t)(λ) almost everywhere (x, t) ∈ R
d
x × (0, T ); (25)

dMε(x, t, λ) = ε|∇xeε|2 dγeε(x,t)(λ) dx dt, (26)

by dλχε( · , · , λ) and Mε, respectively. By virtue of estimates (8), definition of the Young measure σx,t, and
Lemmas 9 and 10 in [13], the following statement is valid.

Statement 2. There exists a subsequence from {eε} such that:
1) the function

χ(x, t, λ) :=
∫

(−∞,λ]×Rd
q

|q|2 dσx,t(s, q) (27)

is determined almost everywhere in (x, t) ∈ R
d × (0, T ), 1-periodic with respect to x, continuous on the right with

respect to λ, and has a finite limit as λ→ ∞ almost everywhere in (x, t) ∈ R
d × (0, T );

2) the support of the Stieltjes measure dλχ( · , · , λ) belongs to the segment [−c0, c0] almost everywhere in
(x, t) ∈ R

d × (0, T ), and the weak star measurable mapping (x, t) �→ dλχ(x, t, λ) belongs to the space L1
w(Q; M(Rλ))

and is related to the sequence of weak star measurable mappings {(x, t) �→ dλχε(x, t, λ)}ε→0 by the limit relation

dλχε −→
ε↘0

dλχ weak star in L1
w(Q; M(Rλ)); (28)

3) there exists a non-negative, 1-periodic with respect to x measure M ∈ M(Q× Rλ) related to the sequence
of measures {Mε}ε→0 by the limit relation

Mε −→
ε↘0

M weak star in M(Q× Rλ). (29)

In formulation 2 of Statement 2, L1
w(Q; M(Rλ)) denotes the space of weak star measurable mappings μ: Q �→

M(Rλ) such that the integral
∫
Q

∣∣∣ ∫
Rλ

F (x, t, λ) dνx,t(λ)
∣∣∣ dx dt is finite for all F ∈ L∞(Q;C0(Rλ)). Correspondingly,

the limit relation (28) is understood in the sense of convergence of the integrals

∫
Q

∫
Rλ

F (x, t, λ) dλχε(x, t, λ) dx dt−→
ε↘0

∫
Q

∫
Rλ

F (x, t, λ) dλχ(x, t, λ) dx dt ∀F ∈ L∞(Q;C0(Rλ)).

Using the limit relations (23), (24), (28), and (29), we can pass to the limit as ε ↘ 0 (by choosing an
appropriate subsequence if necessary) in the equations of the approximating problem (7a)–(7c), (1g). Following
Theorem 5 in [13], we derive the limit formulation (called the kinetic formulation of the Darcy–Stefan problem)
and, simultaneously, a theorem of solvability of this formulation.

Theorem 2. Let (eε,uε, p∗ε) be a solution of problem (7a)–(7c), (1g), and the distribution function fε and
the measures dλχε and Mε be defined by Eqs. (22), (25), and (26). There exists a sequence of small parameters
ε = εk −→

k→∞
0 such that the sequence {fεk

,uεk
, p∗εk

, dλχεk
,Mεk

}k=1,2,... for k → ∞ converges to five functions and

measures f , u, p∗, dλχ, and M , these functions and measures being a solution of problem K considered below [the
convergence (fεk

,uεk
, p∗εk

, dλχεk
,Mεk

) −→
k→∞

(f,u, p∗, dλχ,M) is understood in the sense of the limiting relations

(23), (24), (28), and (29)].
Problem K (kinetic formulation of the Darcy–Stefan problem). With a given initial distribution function

f0(x, λ) = Iλ≥e0(x), where e0 is defined by condition (1g), we have to find a distribution function f ∈ L∞(Rd ×
(0, T )×Rλ), a vector field u ∈ L2(0, T ;H1,2), a pressure function p∗ ∈ L2(0, T ;H2,2), a kinetic measure of parabolic
dissipation dλχ ∈ L1

w(Q; M(Rλ)), and a kinetic entropy measure of defect M ∈ M(Q×Rλ) that satisfy the following
requirements.
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1. The function f(x, t, λ) is 1-periodic with respect to x, monotonic, and continuous on the right with
respect to λ ∈ R. Thereby,

f(x, t, λ) = 0 for λ < −c0, f(x, t, λ) = 1 for λ ≥ c0.

In particular, 0 ≤ f ≤ 1 almost everywhere in Q × Rλ. Hence, the Stieltjes measure νx,t = dλf(x, t, λ) is a
probability measure on Rλ and spt νx,t ⊂ [−c0, c0].

2. The weak star measurable mapping (x, t) �→ dλχ(x, t, λ) is non-negative and 1-periodic with respect
to x, and the support of the measure dλχ( · , · , λ) belongs to the segment [−c0, c0] ⊂ Rλ almost everywhere in
(x, t) ∈ R

d
x × (0, T ).

3. There exists a weak star measurable mapping σ ∈ L∞
w (Rd

x × (0, T ); Prob (Rλ × R
d
q)) such that:

— its projection onto the space of the variable λ coincides with dλf∫
Rλ

ζ(λ) dλf(x, t, λ) =
∫

Rλ×Rd
q

ζ(λ) dσx,t(λ, q) ∀ ζ ∈ C(Rλ) almost everywhere (x, t) ∈ R
d
x × (0, T );

— by means of integral (27), the mapping generates the kinetic measure of parabolic dissipation dλχ;
— the mapping is related to f by an additional relation√

θ′(λ)∇xf(x, t, λ) = −
∫
Rd

q

q dσx,t(λ, q)

understood in the sense of distributions.
4. The kinetic entropy measure of defect M is non-negative and 1-periodic with respect to x.
5. The functions and measures f , u, p∗, dλχ, and M satisfy the equations

∂f

∂t
+ Iλ≥0 u · ∇xf − θ′(λ)Δxf +

∂

∂λ
(dλχ+M) = 0, (x, t, λ) ∈ Q× Rλ; (30a)

[
u + ∇xp∗ − g(θ(λ))

] ∂f
∂λ

= 0, (x, t, λ) ∈ Q× Rλ; (30b)

divx u = 0, (x, t) ∈ Q (30c)

and the initial conditions

f(x, 0, λ) = f0(x, λ), (x, λ) ∈ Ω × Rλ. (30d)

The parameterized measures νx,t and σx,t in Secs. 1 and 3 of the formulation of problem K in the course of
the limit transition as εk → 0 follow from the limit relations (19) and (20) as the Young measures associated with
the sequences {eεk

} and {eεk
,∇xH(eεk

)}, respectively.
Equation (30c) is satisfied almost everywhere in Q. The initial conditions (30d) are understood in the sense

of a weak trace. Equations (30a) and (30b) are understood in the sense of distributions and, with allowance for
Eqs. (30c) and (30d), can be presented as a system of integral equalities∫

Q×Rλ

(
∂tζ + Iλ≥0 u · ∇xζ + θ′(λ)Δxζ

)
f(x, t, λ) dx dt dλ+

∫
Q×Rλ

∂λζ dM

+
∫
Q

(∫
Rλ

∂λζ dλχ(x, t, λ)
)
dx dt+

∫
Ω×Rλ

ζ(x, 0, λ)f0(x, λ) dx dλ = 0; (31)

∫
Q×Rλ

{[
u + ∇xp∗ − g(θ(λ))

]
· ∂λη − ∂λg(θ(λ)) · η

}
f(x, t, λ) dx dt dλ = 0. (32)

In Eqs. (31) and (32), ζ(x, t, λ) is an arbitrary smooth test function 1-periodic with respect to x, which vanishes
in the neighborhood of the plane {t = T } for rather high values of λ; η(x, t, λ) is an arbitrary smooth test vector
function 1-periodic with respect to x, which vanishes for rather high values of λ.
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5. Solvability of the Darcy–Stefan Problem. Kinetic equations of the form (30a) with involved
functions and measures satisfying conditions similar to requirements to the formulation of problem K in Secs. 1–4
were studied in detail in [13, 15]. For Eq. (30a), these works yield two statements, which are the key statements in
the proof of solvability of the Darcy–Stefan problem.

Statement 3. For smooth and convex functions Φ on the segment [0, 1], there exists the Borel measure
ΛΦ ∈ C(Q×Rλ)∗ with a support belonging to the band −c0 ≤ λ ≤ c0 such that the following renormalized inequality
is satisfied: ∫

Q×Rλ

Φ(f)
{
∂tζ + Iλ≥0 u · ∇xζ + θ′(λ)Δxζ

}
dx dt dλ

+
∫

Ω×Rλ

Φ(f0)ζ(x, 0, λ) dx dλ−
∫

Q×Rλ

∂λζ dΛΦ(x, t, λ) ≤ 0. (33)

Here ζ(x, t, λ) is an arbitrary non-negative smooth test function 1-periodic with respect to x, which vanishes in the
neighborhood of the plane {t = T } for rather high values of |λ|.

The proof is similar to the proof of Theorem 6 in [13].
With allowance for the initial condition f(x, 0, t) = f0(x, λ), inequality (33) in the sense of distributions is

equivalent to the renormalized inequality
∂Φ(f)
∂t

+ Iλ≥0u · ∇xΦ(f) − θ′(λ)ΔxΦ(f) ≥ −∂ΛΦ

∂λ
, (x, t, λ) ∈ Q× Rλ.

Statement 4. The following items are valid.
1. Solutions of problem K satisfy the equation

f(x, t, λ)(1 − f(x, t, λ)) = 0 almost everywhere in R
d
x × (0, T )× Rλ,

i.e., the distribution function f takes only the values 0 and 1.
2. The distribution function f(x, t, λ) has the structure of the Heaviside function of the variable λ, i.e., there

exists a function e∗ = e∗(x, t) such that e∗ ∈ L∞(0, T ;L∞), −c0 ≤ e∗ ≤ c0 almost everywhere in R
d
x × (0, T ), and

f(x, t, λ) = Iλ≥e∗(x,t). (34)

The proof of item 1 is similar to the proof in [13, Sec. 5] and [15] and is based on choosing the test functions
in (33) in the form Φ(f) = f(f − 1) and ζ(x, t, λ) = ζ1(λ)ζ2(t), where ζ1 is non-negative and equal to unity on the
segment [−c0, c0], and ζ2 is non-negative, vanishes at t = T , and rigorously decreases at t ∈ [0, T ).

Presentation (34) follows from item 1 of Statement 4 and also from the fact that f satisfies requirements (1)
of the formulation of problem K.

Let us return to the proof of Theorem 1. By virtue of Eq. (21), presentation (34) implies that the Young
measure νx,t is a parameterized Dirac measure concentrated at the point λ = e∗(x, t). According to the theory of
Young measures (Theorem 2.31 in [10, Chapter 3]), this means that e∗ coincides almost everywhere in R

d
x × (0, T )

with e [limit function in Eq. (9)] and

eε → e strongly in L2
loc(R

d
x × (0, T )). (35)

Thus, strong precompactness of the family of approximate solutions {eε, p∗ε,uε} is proved.
Substituting presentation (34) (in which, as was mentioned previously, e∗ = e almost everywhere in Q) and

test functions of the form ζ(x, t, λ) := ϕ(λ)ζ0(x, t) and η(x, t, λ) = η1(λ)η2(x, t) into the integral inequalities (30a)
and (30b) and integrating with respect to λ with allowance for the non-negative value of the measure M and the
structure of the measure dλχ, we conclude that the pair of functions (e, p∗) obtained by the limit transitions (35)
and (24) is the entropy solution of the Darcy–Stefan problem in the sense of the definition of the entropy solution.
It should be also noted that u = −∇xp∗+g(θ(e)) almost everywhere in R

d
x× (0, T ) by virtue of equalities (30b) and

(34). In particular, it follows from here that the velocity vector v(x, t) in the Darcy–Stefan problem is reconstructed
by the formula v = Ie≥0u. Theorem 1 is proved.

This work was supported by the Russian Foundation for Basic Research (Grant No. 07-01-00309) and Na-
tional Research Program for Universities at the Pakistan Higher Education Commission (Project entitled “Advanced
Analysis of Anisotropic Diffusion and Propagation of Acoustic Waves in a Porous Medium”).
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